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Abstract.  We demonstrate switching effects of a three-level atom placed within photonic crystals, which
facilitates quantum computation in quantum bits (qubits).  Here, we show two kinds of switching effects.  One
is the switching that can be used for measuring the quantum information of the qubit.  The other is the
switching that can be used for realizing the Hadamard transform of the qubit.  These switching effects reveal
that a quantum algorithm may be implemented with this photonic crystal system

1.  Introduction
    Recently, demand for a quantum bit [1] (qubit) to encode information for quantum computations has been
increasing.  Several approaches to the realization of a qubit have been proposed.  For example, it has been
reported that cold ions confined in a linear trap [2] and nuclear magnetic resonance [3] can be used as a qubit.
Furthermore, a novel approach to realizing a qubit by controlling a photon has been investigated.  In particular,
attention has been focused on the photonic approach, where a qubit is realized by placing a single three-level
atom within a periodic dielectric microstructure via the nanofabrication technique. [4]
    The photonic approach is based on the photonic band gap (PBG) theory.  The periodic dielectric
microstructure shows the PBG.  When the transition frequency of the three-level atom is near the edge of the
PBG, classical light localization is formed.  This leads to the storage of quantum information in populations on
the two upper levels of the atom, which is relevant for optical memory effects of the qubit. [4]  Recently, we
found two kinds of switching effects in the atomic population on the upper level: one is mediated by changing
the number of the localized modes in the emitted field [5,6], and the other is mediated by controlling the
quantum interference [7].
    In this paper, we demonstrate optical switching effects in a qubit composed of a three-level atom placed in a
photonic crystal which exhibits the three-dimensional (3D) PBG.  We find two optical switching effects for
performing basic operations of the qubit.  One is the optical switching for measuring the quantum information
of the qubit.  This is provided by switching both nonzero steady-state atomic populations on the two upper
levels to zero population, which is mediated by changing the number of localized modes in the emitted field.
The other is the optical switching for realizing the Hadamard transform of the qubit, which is the basis of
quantum computing.  This is provided by switching one of the nonzero steady-state atomic populations to zero
population, which is mediated by controlling the quantum interference.  Furthermore, we reveal the phases and
strength of the external fields required for facilitating the two optical switching effects.

2.  Qubit model
    A qubit is required to form a coherent superposition of two or more measurable quantum states.  When we
use the atomic level ( )tbm m  as the quantum state of the qubit, the quantum state can be measured as the

spontaneous emission on the atomic transition from m  to the ground level 1 , which is characterized by the

atomic population ( ) ( ) 2tbtn mm ≡  and the transition frequency 1mω  between m  and 1 .  We consider a

three-level atom as the qubit composed of the ground level 1  and the additional two upper levels upper :

  ( ) ( ) 23 23 tbtbupper += . (1)

Figure 1 shows a level diagram of this three-level atomic system in the Λ  configuration, where the upper level
3  is dipole-coupled to the ground level 1  with a dipole moment 31d .  δ  is the detuning of the transition

frequency 31ω  from the upper band edge frequency cω , cωωδ −= 31 .
    Furthermore, the qubit is required to store quantum information in the quantum states.  In the case of the



qubit upper , the quantum information is stored in the amplitude ( )tbk , (k=2, 3), where information is

encoded by the value of the amplitude.  It is required for achieving a nonzero value of the amplitude ( )tbk  to

drive the atomic system.  When the driven atom is in free space, the atomic population ( )tnk  on the upper

level k  exhibits simple exponential decay.  Therefore, no quantum information is stored in the atomic
population.  On the other hand, when the driven atom is in the photonic crystal which exhibits a 3D PBG and
the transition frequency is near the PBG, the atomic population ( )tnk  has the nonzero steady-state value

∞→
≡

tksn lim ( )tnk , which corresponds to the storage of the quantum information in the qubit.  Furthermore, we

have found the exact solution of poles in the Laplace-transformed atomic population and revealed the switching
effect in the steady-state atomic population on the upper level 3 , sn3 . [5-7]

    According to the above two requirements, we consider the two upper levels upper  of the three-level
atom placed within the photonic crystal as the qubit.  Figure 2 shows the graphical representation of this qubit,
which is the inverse opal system including spherical voids that have their internal surfaces coated by liquid-
crystal molecules.  In this system, three external fields are used.  The pump pulse laser field of phase pφ  is
used for preparing the initial atomic state in the form:
  ( ) 2sin3cos0 θθ φpie+=Ψ . (2)

The phase θ  of the superposition rate θsin  characterizes the strength of the pump laser field.  The control
cw laser field of the phase cφ  and the Rabi frequency Ω  is used for coupling the two upper levels of the atom,
and the small DC field is used for controlling the detuning δ .
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Figure 1.  Level diagram of the three-level atomic system.          Figure 2.  Graphical representation of the qubit

3.  Quantum information of the qubit
    The quantum information of the qubit upper , which is encoded by the steady-state atomic population on

the upper level k , can be measured as spontaneous emission on the transition from k  to 1 .

Furthermore, the spontaneous emissions from 3  and 2  are identified by their frequencies.  Therefore, both

information in the two upper states ( )tb3 3  and ( )tb2 2  can be measured simultaneously.  It is required

for measuring information in both 3  and 2  as their resultant spontaneous emissions to design a scheme for

simultaneously switching both nonzero steady-state values of the atomic populations, sn3  and sn2 , to zero.

This is relevant for the switching effect in both atomic populations, sn3  and sn2 .
    We find that this switching effect is mediated by changing the number of localized modes in the emitted
field.  This is revealed by using the exact solution of poles [7], similar to the switching effect in the atomic
population sn3  [5,6], which shows that the number of localized modes is characterized by the relation between

the Rabi frequency Ω  and the detuning δ .  In Ω<δ , there is a single localized mode in the emitted fields,

which leads to the formation of the nonzero steady states, sn3  and sn2 , on the upper levels 3  and 2 ,

respectively.  In Ω>δ , there is no localized mode in the emitted fields, which leads to the formation of zero



steady states on the upper levels 3  and 2 .  In Fig. 3, we plot the value of the steady-state atomic

population ksn  as a function of the Rabi frequency Ω  and the detuning δ , which satisfies Ω<δ , for the

phases φ  (= cp φφ − ) π=  and 4/πθ = .  The plot region is represented by the shaded portion in Fig. 3(c).

Figure 3 reveals that steady-state atomic populations sn3  and sn2  are nonzero or zero, depending on the Rabi

frequency Ω  and the detuning δ .  Furthermore, the steady-state atomic populations sn3  and sn2  have the
same cutoff frequency Ω=δ , which leads to the switching effect in both atomic populations.
    This switching effect provides the optical scheme for measuring the quantum information of the qubit,
where the quantum information in both quantum states ( )tb3 3  and ( )tb2 2  are measured as spontaneous

emissions, simultaneously.  The switching is realized by changing the Rabi frequency Ω  and the detuning δ ,
which are controlled by the external fields in Fig. 2.  Furthermore, the spontaneous emissions concerning 3

and 2  are characterized by the frequencies ( )2
31 Re u+ω  and ( )2

21 Re u+ω , where u  [7] is the pole in the
Laplace-transformed atomic population.
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Figure 3.  Steady-state atomic population as a function of the Rabi frequency and the detuning.

4.  Hadamard transform of a qubit
    The Hadamard transform is the basis of the quantum computation in the qubit, which transforms the
quantum states from ( ) 2/23 ±  to 3  or 2 .  In this section, we present a scheme for switching one of

the nonzero values of the steady-state atomic populations, sn3  and sn2 , to zero.  This is relevant for the

switching effect in one of the atomic populations sn3  and sn2 , which may provide the basis of the Hadamard
transform in the qubit.
    We find that this switching effect is mediated by controlling the quantum interference between the upper
states 3  and 2  in Eq. (1).  The quantum interference can be controlled by the two phases φ  and θ  in Eq.
(2).  In the following, we consider the switching scheme for the case where one of the two phases is fixed.
    First, we consider the case where the phase φ  is fixed.  The quantum interference between the upper

states 3  and 2  leads to a periodical fluctuation in the steady-state atomic populations sn3  and sn2 ,

depending on - φsin , where the maximum fluctuation is given by the phase φ 2/3π= .  For this phase value,
we can form the atomic populations that have the zero steady state.  In Fig. 4(a), we plot the value of the
steady-state atomic population ( )tnk  as a function of the phase θ  for the Rabi frequency Ω 25α= , the
detuning δ 0=  and the phase φ 2/3π=  with

  ( )3
0

2
31

2/5
31 12/ cd �πεωα ≈ . [4] (3)

This shows that the steady-state atomic populations sn3  and sn2  are nonzero or zero, depending on the phase

θ  with a period π .  Furthermore, the phases s3θ  and s2θ , which give zero population for sn3  and sn2 ,
respectively, are different from each other.



    Next, we consider the case where the phase θ  is fixed.  We find that the atomic populations, which have
the zero steady state, can be formed by the phase s3θ  given by

  s3θ = ( )[ ]Ω−− − /tan2/ 21 δπ u . (4)

Here, the phase s3θ  is almost constant 4/π  in Ω<δ .  In Fig. 4(b), we plot the value of the steady-state

atomic population ksn  as a function of the phase φ  for the Rabi frequency Ω 25α= , the detuning δ 0=
and the phase s3θ .  This shows that the steady-state atomic populations sn3  and sn2  are nonzero or zero,

depending on the phase φ  with a period 2π .  Furthermore, the phases s3φ  and s2φ , which give zero

population for sn3  and sn2 , respectively, are different from each other.
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Figure 4.  Steady-state atomic population as a function of the phases.

    In Figs. 4(a) and 4(b), we plot the phases mθ  and mφ , which give sn3 = sn2 , respectively.  Using the
phases in Fig. 4, we find that the switching effect in one of the atomic populations is realized by changing the
pair of phases ( )φθ ,  from ( )2/3, πθm  to ( )2/3, πθks  or ( )ms φθ ,3  to ( )kss φθ ,3 , which provides the optical
switching scheme for realizing the Hadamard transform of the qubit.

5.  Conclusion
    We have demonstrated the optical switching in a qubit composed of a three-level atom placed in a photonic
crystal.  First, we found the optical switching effect for measuring the quantum information, which is provided
by switching both nonzero steady-state atomic populations on the two upper levels to zero population, and its
cutoff frequency.  Next, we found the optical switching for performing the Hadamard transform, which is
provided by switching one of the nonzero steady-state atomic populations to zero population, and the phase
values required for this optical switching.  These two optical switching effects present a possibility of using the
photonic crystal for a qubit.
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